Balance 8000

DESIGNENTRY

32-bit computer system
shares load equally
among up to 12 processors

A multiprocessor computer automa tically redistributes
the work load and lets the user add more CPUs, employing
one modified copy of the Unix operating system.

steadily increased as the demand for
computer power has continued to spiral
upward. What would seem to be the most pow-
erful outcome of these trends—s computer that
uses multiple processors—has run afoul of the
law of diminishing returns in several ways.
Traditionally, it has been necessary to call for
extensive changes when more processors are
added to a system. Those additions, in turn, in-
vite memory contention and overworked buses
and require multiple copies of expensive oper-
ating systems. Furthermore, experience has
shown that adding a processor to a system mul-
tiplies that system’s and computing power by a
factor of only 0.8, making each successive pro-
cessor less effective.
By sharing its processing load among up to

The performance of microprocessors has

Gary Fielland and Dave Rodgers
Sequent Computer Systems Inc.

Gary Fielland, director of advanced devel-
opment at Sequent, worked at Intel Jor nine
years, mostly in its OEM Systems operation,
before joining the Portland, Ore., company.
He holds a BSME and a master’s degree in
electrical engineering and computer science
Jrom the University of Florida.

Dave Rodgers is vice president of engineering
at Sequent. He worked at Digital Equipment
Corp. for 10 years, where he was instrumen-
tal in the design of the VAX 1 1/780. He holds
a BSEE from Carnegie-Mellon University.

12 architecturally identical microprocessors
and employing a single copy of a Unix-based
operating system, a new computer eliminates
the barriers associated with multiprocessor
systems. Called the Balance 8000, it delivers up
to 5 million instructions/s (MIPS). Its power
grows almost linearly when more processors—
32-bit NS32032s plus floating-point and mem-
ory management units—are added (see “More
is Better, Finally,” p. 154).

To make the most efficient use of its multi-

g
-

s i W B S GIRE 5

[SEI——

ik

T e e e s ent

A T

A6

DESIGN ENTRY

Cover story: Multiproéessor computer

processing power, the system dynamically bal-
ances its load; in other words, it automatically
and continuously assigns tasks to run on any
processor that is currently idle or busy with a
lower-priority task. This process is carried out
transparently; neither the user nor the pro-
grammer need be aware that the system sports
multiple processors.

Easy to extend

At the same time, the computer is easily ex-
tensible. The user can add CPUs, memory, and
1/0 subsystems within a node, or more nodes
within a distributed network, or more distrib-
uted and local-area networks—all with no
changes in software (Fig. 1). Moreover, if the

machine’s assigned tasks do not run quickly
enough, the user can add two more processors
by simply plugging in a single circuit board.

The new computer is the first of a family to
implement a processor pool architecture (see
“Getting Everyone Into the Pool,” p. 156). The
system consists of a pool of 2 to 12 processors, a
high-bandwidth bus, up to 28 Mbytes of pri-
mary storage, a diagnostic processor, up to
four high-performance 1/0 channels, and up to
tour IEEE-796 (Multibus) bus couplers. It is
managed by a version of the Unix 4.2 BSD oper-
ating system, enhanced to make the multi-
processor base appear invisible to any applica-
tion program.

Each processor in the pool is a subsystem

The Balance 8000, with its scal-
able processor pool drchitecture,
lets OEMs easily set the number
of processors to match an appli-
cation. It does so in spite of a well-
known saturation curve reflect-
ing the performance of tightly
coupled multiprocessors—a rule
of thumb that says that each ad-
ditional processor adds only 80%
of the power of the one previously
added. Under this rule, no matter
how many CPUs are added, the
maximum effective computing
power does not surpass the equiv-
alent of only five processors.

Worse, the rule only predicts
the effective computing power
and not an additional processor’s
effect on a particular application,
which in many ways could actu-
ally degrade that program’s per-
formance. Therefore, this rule is
best taken strictly as a measure of
hardware performance.

Two classes of simple bench-
marks were used to test the rule
against Balance 8000: One class
(Class I, in the figure) consists of
traditional benchmarks like bi-
nary sort and Whetstone pro-
grams. The second (Class II) con-

More is better, finally

sisted of so-called pathological
benchmark programs like cache
busters and memory saturation
generators to push the machine to
its limits. All the tests are concen-
trated on the computer itself and
produce negligible 1/0 activity.
Overall system performance is
N times the ratio t;/t,, where t; is
the run time for executing a
single copy of a benchmark and
t, is the run time for executing
N copies simultaneously. The
results show how the new com-
puter’s performance stacks up
against the rule-of-thumb pre-

diction and the theoretical max-
imum.

Clearly, the cached machine is
well suited for running the Class 1
tests. It achieves a nearly linear
improvement in performance (up
to eleven effective processors
when twelve are applied). With
the same number of processors,
the Class Il tests show a much
wider spread, but still yield an
effective range of more than six to
nine processors. And in all cases,
the benchmarks show a much bet-
ter performance than the rule of
thumb predicts.

Cumulative -
throughput
{effective
number of
processors)

Theoretical maximum

Class |

Ciass i

Rute of thumb

Number of processors

containing three VLSI parts: a 32-bit CPU, a
hardware floating-point accelerator, and a
paged virtual memory management unit. Two
such subsystems are on one circuit card (Fig. 2).
The fully 32-bit CPU and the floating-point ac-
celerator suit technical applications, which
tend to stress 32-bit operations and address cal-
culations. The paged memory management,
which handles a fully associative translation
look-aside buffer and a two-level page table, ac-
cesses up to 16 Mbytes of virtual memory space
for each process.

Each processor also contains a cache memory
for near-zero wait states and minimized bus
traffic. The two-way set-associative cache con-
sists of 8 kbytes of very high-speed memory and

stores recently accessed instructions and data.
In this way, subsequent requests for the same
data are satisfied from the cache, rather than
main memory, to conserve bus and memory
bandwidth. The cache takes in 8 bytes, a trade
between hit rate and bus traffic that affords an
effective hit rate of 95%.

Cache takes brains

Designing a cache for a processor pool archi-
tecture is difficult for several reasons. Since
data in each cache represents a copy of some
data in the primary memory, it is important
that all copies and the original remain the
same, even when a cache is updated. To ensure
that, the new computer employs a write-

Ethernet

SCSi controlier,

Dual-CPU Memory Expansion |Ethernet interface, and
processor controller s _arrays diagnostics processor
boards P =
L 1 I
=z = f J-— Console
I h |
Remote
Console} [console
System link
and interrupt
controller Small Computer
(SLIC) bus System bus System Interface
12 slots {SCSI) bus
Mbytes/s
he. 1 User Ya-in. 50-Mbyte
hg‘ég’&:f ?r?tﬂ?fggg devices tape drive | | disk drive

board

8-slot multibus

400-Mbyte Ya-in.

16-line User

multiplexer devices disk drive | | tape drive

1. An extensible multiprocessor computer, the Unix-based Balance 8000 centers on a
high-speed 26.7-Mbyte/s bus. Plugged into the bus are one to six dual-N$32032
processor boards, at least one memory controlier, and at least one i/0 controller.

) '.':}

B e

s e

& .t . R . -

DESIGN ENTRY

Cover story: Multiprocessor computer

Getting everyone into the pool

The concept of multiprocessing
embraces a full spectrum of struc-
tures that range from loosely to
tightly coupled (see the figure).

Multicomputers, or specialized-
function multiprocessors, encom-
pass 1/0 controllers or data-
acquisition subsystems whose
processor boards often include
special-purpose hardware. But
the term “multiprocessor” may
more classiecally be applied to
general-purpose systems consist-
ing of two or more processors of
equal capability. This definition,
however, covers at least three
different structures: coordinated
job scheduling, master and slave
scheduling, and homogeneous
scheduling.

In coordinated job scheduling,
a loosely coupled approach, each
processor is relatively autono-
mous. Each has its own interrupt
system and storage. Each pro-
cessor also has its own copy of the
operating system and receives its
job load from a centralized sched-
uling-policy manager. Once as-
signed, a job stays with the same
processor until it ends.

One advantage of this approach
is that there is relatively little
coupling among the processors,
simplifying the design. But there
are significant disadvantages to
this approach, too. First, the pro-
cessing load is balanced only at
the beginning of a job, when a
user logs on, making the balance
relatively inflexible. For this rea-
son, it is not unusual for several
users to experience poor response
even when a processor within the
group sits idle.

Other short-term resource im-
balances are also possible, such as
a memory shortage occurring in
one processor while a neighboring
processor has memory to spare.
Also, it is not possible to employ
processors concurrently to speed

up a single application, as is often
needed for technical tasks.

In a master and slave schedul-
ing, a tightly coupled approach,
all memory is accessible to all
processors, but one processor is
distinguished (usually by the
software) as a master while all
the others are slaves. The master
maintains all of the system struc-
tures and schedules the work of
all the slaves. Slaves, however,
are limited to executing only user
code while the master handles
both user and supervisory code.

In a dual-processor, master-
slave, Unix-based implementa-
tion at Purdue University, for ex-
ample, the slave inspects a run
queue to get the next process but
can take only those marked as be-
ing user-mode code. Even then, if
a process running on a slave
makes a system call, the slave
stops the process, marks it for
supervisor mode service, and re-
inserts it on the run queue.

Master and slave systems, like
the previous approach, are relati-
vely easy to implement, and they
do have the potential for handling
parallel-programmed applica-
tions. But under heavy system
loads, the master becomes a ma-
jor bottleneck, and this limits the
number of processors the system
can have.

In the third case, a general
multiprocessor system with a
homogeneous architecture, all re-
sources (memory, I/0 devices, the
interrupt system, and so on) are
accessible to all processors. Re-
sources are dynamically assigned
to processes and not hard-wired
rigidly to a processor. In this form

of tightly coupled multiprocess-
ing, a process scheduler assigns
processors from a pool, earning it
the name of processor pool archi-
tecture. Also, if the number of
processors may be changed at
need, it then is known as a scala-
ble processor pool architecture.

The principal drawback of this
approach is the difficulty of im-
plementing it. The operating sys-
tem must be carefully designed to
ensure that mutual access is prop-
erly synchronized and, where nec-
essary, excluded. In addition, the
hardware must be carefully bal-
anced to minimize performance-
degrading contention.

The advantages, however, are

notable. Since the system is fully
symmetric, no single processor
can limit the performance of the
overall system. Instead, the pool
of processors works as a team
under all conditions to maximize
the system’s performance.
Also, the multiprocessing nature
of the system is invisible to the
user, while its shared resources
and tightly coupled nature pro-
mote parallel programmed appli-
cations, which can be accelerated
by adding more processors.

Of course, there are other, more
exotic multiprocessor architec-
tures, like data-flow machines,
transputers, and inference ma-
chines, which promise massive
parallel processing power in di-
rect proportion to the number of
processors used. While of great
academic interest, though, these
machines suffer from revolu-
tionary architectures that are
incompatible with existing von
Neumann-based software.

Tight coupling

-+ Loose coupling

S . - . e et e e e

< Parallel Serial >
Pool processor Coordinated Point-to-point
architecture job computer
Master- Multi- Local-area networks
slave computers networks

of computers

through mechanism, in which each write cycle
goes through to the bus and memory, in addi-
tion to updating the appropriate cache.

In this way, the write-through mechanism
keeps the primary memory up to date with the
caches on each processor. But what keeps the
individual caches consistent among them-
selves? If two processors have both recently
read the same data into their respective caches,
and one of them updates its cache, what will
keep the second processor from using its now
stale data?

The answer is found in each cache’s bus-
watching logic (Fig. 3). This logic continuously
monitors all write eycles on the bus and com-
pares addresses with those in its own cache to
see if any writes affect its own contents. When
such an address appears, the cache invalidates
the entry in question.

Also, although write cycles typically make up
only 10% to 15% of the processor cycles, a pro-

cessor could still waste precious time waiting
for the completion of a write cycle. To avoid
needless waiting, a write buffer relieves the
processor of the write operation’s address and
data, letting it proceed while the buffer waits
for the memory cycle to complete.

A SLIC chip

The last component of the processor sub-
system is a custom IC, the System Link and In-
terrupt Controller, or SLIC. A SLIC appears
with every processor in the system, as well ason
every memory controller, I/0 channel, and bus
controller board. Communication between
SLICs is accomplished with a simple command-
response packet carried over a dedicated bus.

The controller serves several functions.
First, it is the key element of the system’s glob-
al interrupt system. Device interrupts are
broadcast over the controller’s bus as a packet.
When that happens, the chips arbitrate among

) Memory
System link management
and interrupt unit

controlier

1
Processor 1

Floating-point
unit

Write
buffer

Memory
management
unit

Processor 2

Floating-point
unit

System link
and interrupt
controller

Write
buffer

Bus
interface

System bus

2. Each processor in the pool is a subsystem containing three VLSI
components: a 32-bit CPU, a hardware floating-point accelerator, and

a paged virtual memory management unit.

R TR TS T T

P ¥ S A 1 SN b TR B VT R el Sl FRYE

DESIGN ENTRY

Cover story: Multiprocessor computer

themselves on the basis of the priority of the
processes running on their companion pro-
cessors. The SLIC whose processor is executing
the lowest-priority job at the time transforms
the packet into an interrupt for its processor.
With this mechanism, neither device interrupt
signals nor device drivers are bound to particu-
lar processors, and only the lowest-priority
processes are ever interrupted.

Cache of semaphores

A second function of the controller is to man-
age a cache of single-bit unit-semaphores. Such
semaphores exclude access to a processor; in
fact, all high-level exclusion and synchroniza-
tion facilities involving the operating system
are based on this function. Moreover, since
each processor’s SLIC is on the local bus, access
to the chip does not incur any system bus cycles.
As a result, spin-locks, which repeatedly re-
quest access from a SLIC semaphore, never
waste bus or memory cycles.

Finally, the controller serves as a conven-

ient communication path among modules. For
example, system diagnostics and debugging
routines take modules on and off line using the
SLIC bus, which carries error management in-
formation. Also, the controllers note the power-
up codes of modules and record their presence
in an auto-configuration table accessed by the
operating system. As a result, when the user
plugs in a new circuit board, the system auto-
matically reconfigures itself to include the new
board without switches, wire-wrap stakes, or
jumpers.

The circuit combines the functions of a serial
receiver, a contention resolver, a transmitter,
an interrupt controller, a semaphore cache,
parallel I/0 ports, and a processor interface
(Fig. 4). It is implemented using a 3-um CMOS
process with gate-array technology and comes
in a pin-grid array. The SLIC bus is a two-wire,
bit-serial wired-OR bus that facilitates the dis-
tributed self-arbitrating access mechanism.
When the busisidle and a controller has a mes-
sage to send, the chip simply sends the message

cPU 1

Ly

Y
Cache{ Block
| updated

}V\(Write

buffer)

Block marked

e s e s e, e . e, A S S e 0 S S T o e o o e o, o et

cPU 2 Main memory

Block
L updated

invalid

3. Bus-watching logic makes sure that a processor does not read stale data from its
own cache. The logic continuously monitors the system bus, checking the
addresses that appear during write cycles to see if any data associated with its

own cache has been updated eisewhere. If it has, the write-through operation marks
the stale data as invalid while also updating main memory.

over the bus. If it collides with another mes-
sage, the lowest-priority one backs off to try
again later.

A bus’s burden

Obviously, the system bus for a scalable pro-
cessor pool architecture machine is a critical
element. It must provide software-transparent,
symmetrical access between all processors and
the system resources, including 1/0 subsys-
tems of widely varying access times. And it
must do so with careful regard to the high band-
width required by the 32-bit CPUs. Yet, for the
sake of economy, it must also have minimal in-
terface complexity.

The Balance 8000’s system bus achieves these
goals through a combination of techniques. For
example, a single, global 10-MHz synchronous
bus that interconnects all processors to all oth-
er resources supplies the required symmetry.
The bus yields the necessary performance with
a 32-bit parallel time-multiplexed address and
data path, as well as a set of control paths. The

combination of time-multiplexing and Fast
TTL circuits helps keep the bus interface
circuitry, including transceivers, to fewer than
201Cs.

A multiple pipeline protocol with multiple
4- or 8-bit fixed-length packets up to 8 bytes
long helps to maintain the bus’s bandwidth. To
spare the primary storage pipelines from the
possible long latency of serving relatively slow
I/0 buses such as Multibus, separate pipelines
have been assigned to serve reading, writing,
and I/0 requests.

As aresult, the protocol splits responses
from requests so that the bus is only tied up for
those cycles needed to transmit the request and
response information. The storage access itself
causes no bus delays and instead occurs in par-
allel with the traffic from other requests and
responses. Moreover, the write response has its
own dedicated set of wires on the bus and so
happens “out of band.” This frees the main
32-bit data path for more traffic.

As an example of the bus’s parallelism, sup-

Processor interface Processor interface
L] ||
Interrupt interrupt —
controller — controller -
N 7o 1
System B System
link and link and
interrupt interrupt
controller Semaphore controller Semaphore
1 cache N cache
Receiver and Receiver and
: contention N contention
Transmitter resolution Transmitter resolution
SLIC packet
Start Message Error
bit priority Data control
N g
SLIC bus Y L,
4
SLIC clock Py
- § 5~

4. A SLIC (System Link and Interrupt Controlier) chip accompénies each processor, memory controlier, 1/0
channel, and bus coupler in the system. it provides a global interruption system, manages the cache
semaphores, and establishes a packet-based communication link among the system’s modules.

;

DESIGN ENTRY

Cover story: Multiprocessor computer

pose that processor P, sends a 1-byte request
destined for the Multibus (Fig. 5). It takes only
one 100-ns cycle to transmit and enqueue the
request on the Multibus coupler. Next, pro-
cessors P, and P; both transmit 8-byte read
requests to the primary storage in the following
bus cycles, after which the bus is again free for
traffic.

Then, when the 8 bytes of data requested by
P, are available, the storage controller takes
two bus cycles to return those 8 bytes of data to
P,, followed immediately by the two bus cycles
needed to return 8 bytes to Ps. The bus is then
free again until some time later when, depend-
ing on the speed of the addressed Multibus
device, the Multibus coupler obtains its data
from the device and uses the bus to respond to
processor P;.

Since the bus traffic is decoupled from the
main-storage access, the bus can be accessed

with the most efficiency. This decoupling, along
with the fact that the memory controllers can
be interleaved, results in a sustainable band-
width of 26.7 Mbytes/s out of a theoretical max-
imum of 40 Mbytes/s.

Resolving probiems

Beyond bandwidth considerations are the
issues of bus arbitration, congestion, and con-
trol of and recovery from errors. To address
these problems, the system employs a central
multi-level arbiter. It has multiple priority lev-
els to serve mechanical mass storage devices
whose performance would suffer if their data
transfers were not accepted in real time.

All processors share a given priority level as
well, and within that level the arbitration cir-
cuit guarantees fairness. This is important be-
cause it ensures that, even under a very heavy
load, there is no condition that would deprive a

Request
response

Request
response

e e i
JRCIC I

Device

Multibus

Multibus
coupler

Memory

Request

Response
queue

Request
queue

Response
queue

Request
queue

response

PGy U 050 RS

SB 8000 system bus

D(P, request P, requestXPa request Bus friXPzirewonse 1X P, response 2XP3 response 1% response 2ﬁus free)(j?

Bus activity timeline
| |
! Primary storage / '
access time

]
i

|
U Muitibus device access time

5. One technique for achieving the bus’s 26.7-Mbyte/s transfer rate is to release the bus after a memory
request without waiting for a response, so that the bus is occupied only for the cycles needed to transmit
requests and response information. Requests and responses are queued until the bus is free.

e e e e e g i e

given processor of bus access. This in turn pre-
vents deadlocks or intolerable degradation in
performance.

A related issue for split-response protocol is
that of managing congestion and controlling
the flow of queue requests. Instantaneous
heavy loads on the bus can fill up the request
queues of the responders. In some systems, the
flow control mechanism uses a negative
acknowledge (NAK) response to keep those
queues from overflowing. However, such a sys-
tem can degrade from excessive request and
NAK cycles. In the Balance 8000, however, each
requester stores status information about each
relevant queue. Requests are not propagated
onto the system bus unless they are guaranteed
a slot in the address queue. Therefore, even
under heavy loads, each and every bus cycle is
used productively.

Controlling and recovering from errors is

alwaye a difficult issue, but even more so in a
multiprocessor system where there are many
contenders for the bus and a high degree of con-
currency. The system’s bus checks for parity
and uses other error-checking schemes. When-
ever a serious error occurs, the hardware re-
cords the identity of each party involved and
then freezes the bus so that the error does not
create further trouble. Next, a diagnostic pro-
cessor takes control and, through the link and
interrupt controller chips, investigates the
problem. Typically, recovery software will re-
set the computer, run selected confidence tests,
disable the faulty module, and reboot the
system on the remaining hardware.

Memory matters

In a scalable processor pool architecture, the
single global memory is the center of the uni-
verse. It stores all resident code and data and

SB-8000 system bus

expansion

Array

card
Memory Memory Memory
array array array

l | l

Memory
i controller
Bus interface 1] card
Request Response
queue queue
Memory
1 T array
2|
Controtler P
and error checking <
and correction -
32
N Memory
System link
and interrupt array
controller

Memory Memory 1 Memory
array array array

SLIC bus

6. A pipelined packet bus and 8-byte transfers help maintain the high bandwidth needed by the
global memory in the muitiprocessor system. Requests arrive from the bus interface and are
stored in the request queue, while responses queue up and await access to the bus. At the
-same time, the controlier cycles the 64-bit-wide arrays to access data and check errors.

g

PN N R

DESIGN ENTRY

Cover story: Multiprocessor computer

must satisfy all requests that are not met by the
local caches. Therefore, a high bandwidth for
the memory is critical.

To do its job, the central memory uses a pipe-
lined operation and a memory controller, which
together sustain a data transfer rate of 8 bytes
every 300 ns (Fig. 6). Memory requests arrive
from the bus interface and are stored in the
request queue. At the same time, the controller
can cycle the 64-bit arrays to access the data
and generate and check error-correction codes.
Alsoin parallel is the response queue which re-
turns responses to previous requests.

In addition, the SLIC circuit on the memory
controller card is used to report any error infor-
mation and identify a memory module and its
configuration to the auto-configuration soft-
ware. It also allows that software to set attri-
butes on a memory controller card, like a base
address and the number of controllers to be in-
terleaved.

1/0 reaches out

Although technical applications often re-
quire sheer computational intensity, it is still
important to have a balanced 1/0 capability.
This is the job of the computer’s I/0 channel
processor card (Fig. 7). Each channel card in-
cludes a 32016 whose instruction set is compati-
ble with the 32032 CPU and which interprets
channel commands and drives the on-board
1/0 adapters. Also, the processor on the first
channel board serves as a diagnostic processor,
taking advantage of the card’s fully self-con-
tained environment. The processor operates
normally even in the event of hard errors in
such vital portions of the system as the bus,
memory, or processor pool.

Among the I/0 adapters are an IEEE
802.3-compatible Ethernet interface and a
Small Computer Systems Interface (SCSI)
mass storage bus. This emphasis on industry
standard interfaces makes it easy for the OEM
to mix and match from among the growing set
of compatible mass storage devices. The sys-
tem’s software device driver also benefits, ac-
commodating a wide range of disks without
modifications.

In order to peak the 1/0’s throughput, the
system employs individual FIFO “surge” buff-
ers and direct memory access controllers that

are designed for 8-byte transfers. Using surge
buffers instead of a conventional RAM to buff-
er bursts of data from an 170 device minimizes
the delay between the data’s arrival and its up-
dating of the main memory.

The I/0 channel processor board is designed
to sustain both (Ethernet and SCSI) adapters
at once. Its high transfer rate and ability to
gather scattered data into consecutive memory
locations make it an excellent match for the
large disk transfers used in Unix 4.2 BSD’s fast
file system. Since the system supports up to
four such 170 channel boards, the designer has
the capability to balance the I/0 bandwidth to
match the computational bandwidth for agiven
application.

The computer system’s IEEE-796 (Multibus)
bus conveniently obliges an OEM who wants to
add custom hardware or put in one of the many
Multibus-compatible, special-purpose 1/0
adapters. Up to four such buses can be con-
nected. Moreover, data can move directly be-
tween the system bus and the Multibus and the
bus coupler maps addresses and connects pro-
tocols.

Unix for everyone

As mentioned earlier, the computer’s oper-
ating system is based on Unix 4.2 BSD. This
version is a standard in the area of technical
processing and offers several advantages over
other Unix derivatives. The fast file system, for
example, vastly improves the I/0 throughput
with clever data placement algorithms and by
transferring large blocks of contiguous data.
These file-management improvements count
for even more in a multiprocessor system. Also,
the virtual memory and demand-paging fea-
tures of Unix allow several large programs to
run concurrently and reduce the overhead in
starting a new process.

In addition, the 4.2 BSD version takes advan-

" tage of the proven DARPA (Defense Advanced

Research Projects Agency) standard TCP/IP
(Transmission Control Protocol/Internet Pro-
tocol) to facilitate integrated and heterogen-
eous network services. Some examples are
remotely transferring files, logging on, or exe-
cuting commands.

Much of the power and elegance of Unix is in
its concise syntactical notation and support for

T e S R e e A e e e

multiprogramming. Unix encourages the pro-
grammer to construct applications hy piecing
together collections of smaller programs; these
are interconnected by a simple inter-process
communications (IPC) facility: the pipe. A pipe
connects the output of one program to the input
of a second, whose output goes to the input of a
third program, and so on.

The IPC facilities of Unix 4.2 BSD extend to
include a so-called socket-based message-
passing mechanism. Rather than doing every-
thing in a large monolithic program, this philo-
sophy advocates smaller, simpler, and easily
reused programs all communicating through
the IPC facilities.

Unix also encourages multiprogramming

at the human level. With the simple shell
command-language syntax, a user can invoke
one or more processes and have them run in the
background simply by terminating the com-
mand with an ampersand (&). Alternatively,
the user can invoke several communicating
process simultaneously by using the pipe syn-
tax“/.”

Done with mirrors

On a single-processor computer, apparent
concurrency is not real, since the processes are
multiplexed (time-sliced) through a single pro-
cessor. However, on a multiprocessor system
with a processor pool architecture, the pool of
symmetrical processors will execute the pro-

T

Disk drive
Ethernet . Scsi
interface interface)
System link
and interrupt Dual
controller UART
Tape drive
Surge 32016 Surge _—%
1 buffer processor buffer
Printer
RAM ROM
Channel and diagnostic
DMA processor DMA
controller controller
SLIC bus

Bus interface

System bus I

7. Each 1/0 channel card contains a 32016 processor that interprets channel commands and
drives the on-board I/0 adapters. The processor on the first channel board also serves as a
diagnostician; it can operate normally even if hard failures befall the system bus memory or

processor pool.

4

DESIGN ENTRY

Cover story: Multiprocessor computer

cesses in true concurrency, resulting in a multi-
plicative improvement in throughput.

This architecture, then, combines the ben-
~ efits of Unix’s existing application set with the
scalable power of multiple processors. Simply
adding or deleting processors changes the level
of performance without a single software
change.

Some changes needed

However, although the Unix phiiosophy is
based on multiprogramming, the standard
implementation is still based on a single-pro-
cessor architecture. By implication, that would
limit the operating system functions to one pro-
cess at a time. In contrast, a processor pool ar-
chitecture often accommodates several simul-
taneous processes executing within the kernel
on several processors. For this the kernel needs
to be fully sharable by multiple, concurrently
executing processors.

The version of Unix ported to the Balance
8000, called Dynix, required modifications in
four major areas: mutual exclusion, interrupt
distribution, virtual memory management, and
process scheduling.

On a single-processor system, mutual exclu-
sion of processes from the operating system is
achieved simply by disabling processor inter-
rupts, therefore guaranteeing that no other
process will get control until the interrupts are
enabled. However, this technique is not enough
to guarantee mutual exclusion for a processor
pool multiprocessor, since other processors
may be simultaneously executing processes via
the kernel. The Dynix kernel, therefore, incor-
porates a more robust model of exclusion based
on three mechanisms: gates, locks, and coun-
ting semaphores.

Gates and locks

A gate, the lowest-level mechanism, isimple-
mented in the SLIC circuit and used only for
routines where time is critical, since there are
only a limited number of them available. A lock
is a software version of a simple, non-queueing
unit semaphore built over the gate mechanism;
it is used when the requesting process cannot
afford to “sleep” (lapse until notified) while
waiting.

The highest-level exclusion mechanism is the

counting semaphore, consisting of a counter
and a waiting queue. Semaphores completely
replace the conventional sleep-and-wakeup
mechanism, providing more structure and
eliminating unnecessary context switching.
Semaphores are used by processes to avoid
waiting for events or to hold the sought re-
source for a long time.

In a conventional Unix system, a single pro-
cessor receives all device-interrupt signals.
However, in a processor pool architecture, any
processor can accept any interrupt signals. The
resulting decrease in interruption latency is
another improvement over single-processor
systems.

If necessary, however, device drivers can
avail themselves of the kernel lock and sema-
phore mutual-exclusion mechanisms to protect
critical data. Thereis also a mode that emulates
a single-processor system to simplify the port-
ing of existing monoprocessor drivers to the
new multiprocessor machine. Moreover, Dynix
supports configuration at the object-code level,
so users can add drivers and rebuild the kernel
without the source code.

Spreading the work around

Process scheduling in Dynix is conceptually
quite similar to that of conventional Unix.
There is a single, priority-oriented run queue;
since the system is fully symmetrical, any pro-
cess can execute on any processor, whether in
supervisory or user mode. As for priorities, the
basic scheduling philosophy is to always run
the highest-priority, ready-to-run processes
first.

Dynix’s global visibility minimizes the num-
ber of context switches that will result from
system events. It works this way: a periodic in-
terrupt causes the processor accepting it to

" determine if there is a process running that

should be preempted by a higher-priority onein
the run queue. Similarly, when one currently
executing program initiates a second process,
the processor checks to see if it should preempt
any other program running on any of the other
processors. If so, the processor may use its
SLIC’s software to nudge whichever other pro-
cessor is running the lowest-priority task into
rescheduling it and taking on the new job.
Obviously, Dynix contributes to the pro-

|

cessor pool architecture’s ability to balance
loads dynamically. As already mentioned, this
is a function of the fact that all processors are
identical and all code and data are equally ac-
cessible to all processors. There is no rigid bind-
ing of processes to processors, and there are no
restrictions limiting the ability of processes to
execute on any of the processors. In short, any
process in an executable state can run on any
processor.

To get down to specifics, the Dynix scheduler
continuously monitors the set of ready-to-run
processes and dynamically schedules the
highest-priority ones so that each processor is
always working on the most important job as
long as there is work to be done.

Many applications

A computer of this kind opens up new appli-
cation possibilities, the breadth of which is ex-
emplified by two extremes: a multi-user, multi-
purpose network server, and a single-user,
application-specific workstation.

At the first extreme, technical OEM applica-
tions require a broad range of distributed and
centralized computing power, but the over-
riding requirement is that each user have full
access to all the system’s resources. In part, this
means that a computer’s files be fully available
to dumb terminals, personal computers, and
workstations alike.

A network server fits well into this scheme
because it can manipulate the contents of a data
base for the workstation, offer files and com-
puting power to the personal computer, and
provide all but display services to the dumb ter-
minal. Moreover, the computational power re-
quired of the server depends on the size of the
network. Here the scalable pool idea is a natu-
ral fit.

The multiple users will undoubtedly generate
a large number of independent processes that
will be transparently and dynamically sched-
uled by Dynix to run in order of priority on the
available set of processors. Therefore, an in-
creased throughput attributed to the two or
more processors is available without the appli-
cation designer expending any extra effort.

With this approach, the OEM can create a
“product line in a box,” offering a basic config-
uration that processors can be added to or sub-

PG R POy TN T

[T SR e I O s

tracted from to meet the particular needs of the
network. Similarly, the installed base of sys-
tems can be upgraded in the field, without soft-
ware changes, by the simple addition of a pro-
cessor card.

Workstation potential

At the other extreme, some individual appli-
cations are so computationally intensive that
they justify the expense of their own dedicated,
single-user workstations. Here the OEM needs
to offer a low-cost starter system and the
opportunity to add processing power later. In
addition, the workstation must fit into a net-
work with other, and probably different, com-
puter systems, in order to conveniently share
data bases.

Oneexample has an image server asone node,
a high-resolution film recorder as another, and
a workstation demanding high-quality graph-
ics. Here again, the pooled processor systemisa
powerful solution. The OEM can configure a
low-cost starter system with only 2 processors,
while offering to upgradeit to 12as needed. And
the high-performance graphics subsystem is
easily connected to one of the industry standard
1/0 ports, like the SCSI bus; for the highest
possible performance, it could go directly on the
system bus.

In addition, most computationally intensive
technical applications have a great deal of in-
herent parallelism that can exploit the power of
the multiprocessor computer by making simple
changes to a program originally intended for a
one-processor computer. The ray-tracing algo-
rithm used to realistically model and shade
three-dimensional solidsis a good example. The
parallel computational paths are easily separ-
able; a typical algorithm can be so modified in
less than a man month. In many cases, the algo-

- rithm can even be designed to dynamically
adapt to the number of available processors,
thereby providing the convenience of self-
configuring software, even at the application
level.o

Reprinted from ELECTRONIC DESIGN - September 6, 1984

Copyright 1985 Hayden Publishing Co., inc.

